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SUMMARY 
A previous paper drew attention to the collective importance 

of three physical quantities Q, R, S associated with ideal fluid 
flow in a horizontal channel. Invariability of these quantities 
at different cross-sections of the flow implies respectively 
conservation of flow rate, energy and momentum; and their 
values determine a wave-train uniquely. The properties of 
(2, R, S are recalled in the present paper to account for the various 
effects of lowering a rigid obstacle into a stream. The conditions 
giving rise to dissimilar types of flow are examined ; in particular, 
the circumstances causing stationary waves on the downstream 
side are clearly distinguished from those under which the receding 
stream assumes a uniform ' supercritical ' state. A well-known 
result in the theory of the solitary wave is shown to apply to the 
receding stream even when the extreme conditions for the wave 
are exceeded ; although it fails to account for a region close to the 
obstacle where the curvature of the streamlines becomes large. 
In passing, a feature of the theory is shown to bear on the practical 
problem of producing a uniform stream. Precise calculations are 
made for the flow under a vertical sluice-gate and under an inclined 
plane. T o  account for the region near the bottom edge of the 
sluice-gate, a method based on conformal transformation is used 
whereby an unknown curve in the hodograph plane is approximated 
by an arc of an ellipse. The accuracy of the results is more than 
sufficient for practical purposes, and they compare favourably with 
solutions previously obtained by relaxation methods. A number 
of experiments with water streams are described. 

1. INTRODUCTION 
When the stream in an open horizontal channel is spanned by a fixed 

cylindrical obstacle, the effects of the obstruction may extend to great 
distances both upstream and downstream. Furthermore, each part of the 
stream may take several distinct forms depending on the cross-sections of 
the cylinder, the extent of its immersion, and the nature of the undisturbed 
stream. Kelvin (1886) demonstrated that a train of periodic waves may 
form downstream, whose amplitude increases with the drag on the obstacle 
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(i.e. with the ‘wave resistance ’). His theoretical treatment was limited to 
cases where the waves are small in both amplitude and length ; but Benjamin 
& Lighthill (1954) have shown in general that the wave resistance may 
take any value up to a certain maximum. If the obstacle is lowered 
sufficiently far into the stream, energy losses may occur due to breaking of 
waves, and further immersion may lead to the formation of a fully turbulent 
‘ bore or ’ ‘hydraulic jump’ behind which waves appear to be absent. 
The action of a fixed obstacle can also bring about a transition from a uniform 
subcritical stream (of which the speed is less than l/(gx depth)) to a 
supercritical one. This effect is best known through the example of 
a vertical sluice-gate, which is discussed in many text-books on hydraulics. 
The conditions under which waves can form ahead or in the rear of a sluice- 
gate have not, up to the present time, been satisfactorily explained. 

The first object of this paper is to present a unified account of these 
various effects, and to make clear the relation amongst them. A general 
method for calculating the form of the receding stream when waves are 
absent will also be outlined, and will be illustrated by applications to the 
flow under a sluice-gate and under a planing surface. The treatment is 
based on ideal-fluid theory, but a number of experiments have been made 
on water streams in order to test the theoretical results ; these experiments 
will be described in the concluding part of the paper. A fact emerging 
incidentally from the discussion appears to have an important bearing on 
the practical problem of producing a uniform horizontal stream of water. 
Such streams are often desired for tests on ship models, and for this reason 
they were made the subject of numerous experiments by Binnie, Davies & 
Orkney (1955). These authors found it possible to produce a satisfactory 
subcritical stream without measurable waves, provided the Froude number 
( F  = speed/l/(g x depth)) was less than about 0.5. At Froude numbers 
exceeding this value waves always appeared, despite a variety of measures 
aimed at avoiding them. In agreement with this result, the present theory 
indicates that flows converging towards a uniform stream are impossible 
at Froude numbers somewhat less than unity. This fact might be relevant 
to the design of a channel for model tests over a range of speeds. 

In the course of examining the asymptotic properties of a disturbed 
stream, we shall show that a formula known in the theory of the solitary 
wave also applies to flows beyond the extreme conditions for the wave. I t  
is subsequently used to calculate the form of the converging stream which 
issues from under a sluice-gate. The flow in the immediate neighbourhood 
of the gate has to be treated in another way ; but when suitably combined, 
the two methods account satisfactorily for the whole stream. The results 
of the calculations demonstrate the variation of the contraction ratio with 
Froude number, and hence establish the relation between the sluice-opening 
and the total discharge. They are apparently more accurate than previous 
estimates, notably those due to Pajer (1937), and the single result which 
Southwell & Vaisey (1946) calculated by relaxation methods. The latter 
authors drew attention to the difficulties which confront their methods 
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when applied to flow near points of separation from solid boundaries 
(p. 160 in their paper). These difficulties appear to be responsible for 
most of the discrepancy (about 1-50,;) between their computed value of the 
sluice-opening and the value according to the present theory. From 
a practical point of view there is admittedly little justification for carrying 
the calculations to high orders of approximation, since the theory does not 
apply with precision to  real fluids. In the experiments ‘described later, 
for instance, the thickness of the boundary layer on the channel bottom was 
observed to be about one-fifteenth of the sluice-opening, thus indicating- 
that frictional effects were far more significant than the final error in the 
ideal-fluid calculations. An accurate form of the theory is nevertheless 
desirable, for at least it gives assurance that the discrepancies observed in 
real flows are due to friction alone. 

We shall assume 
that the motion is steady, and that both far upstream and far downstream 

The problem to be considered is indicated in figure 1. 
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Figure 1. Side elevation of sluice-gate. 

the flow is uniform and horizontal, having depth and velocity h,, u0 and h, u 
respectively. In the paper already cited, Southwell & Vaisey noted the 
existence of a symmetrical solution in which the free surface regains its 
original level after passing the sluice ; but flow of this kind does not occur 
in practice unless there is some severe obstruction downstream. The 
free surface usually falls to a lower level, and Binnie (1952) has shown that 
the approaching stream must then be subcritical ( F  < 1) and the receding 
stream supercritical. The condition of continuity is 

where Q is the discharge per unit span ; and Bernoulli’s equation may be 
written 

uoho = uh = 0, 

gh,+$u; = gh+$u2 = g H ,  

(1.1) 

(1.4 
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where H is ihe total head measured above the bottom of the channel. If 
both Q and H are given, h,, h, uo and u can be calculated from (1.1) and 
(1.2), but there is no simple way of finding the sluice-opening s. 
Alternatively, if s is specified together with either Q or H ,  as is usual in 
a practical example, elementary methods fail to give any of the other 
quantities. In addition to (1.1) and (1.2) a third simple relation may be 
written down equating the reduction in flux of momentum to the resultant 
of horizontal forces, which include the force P on unit span of the gate and 
the pressure forces in the oncoming and receding streams ; thus, denoting 
density by p ,  we have 

p(u;ho-U2h) = P-$pg(h+V). I (1 .3)  

However, since P is unknown, this equation is of no assistance in the main 
problem. 

At point A in figure 1 the free surface rises to stagnation level, and the 
velocity there is zero. At point B it must slope vertically, since otherwise 
the bounding streamline would make a sharp corner there and the velocity 
would become infinite, which is clearly impossible if the surface is free. 
One may nevertheless expect that the free surface has infinite curvature at B, 
far this property has been established in many similar instances when 
gravity is absent (see, for example, Southwell & Vaisey, p. 160). 

2. GENERAL THEORY OF THE FLOW 

The investigation is conveniently begun by considering the different 
types of flow which may exist at points far removed from the obstacle. 
In  other words, we shall first examine the possible asymptotic forms of the 
flow upstream and downstream. At the outset it is necessary to emphasize 
that the stream cannot be perfectZy uniform at any finite distance from the 
obstacle. This fact becomes obvious when one considers that the hodograph 
variable 5 = qede (where q and 0 are the magnitude and direction of the 
velocity) is analytic within the stream ; therefore, by virtue of an elementary 
property of analytic functions, 5 cannot be constant throughout any finite 
region unless it is constant everywhere. Having thus dismissed the case 
of a uniform stream, there remain only two types of flow capable of extension 
to indefinitely large distances upstream or downstream. The first possibility 
is a train of periodic waves, and the second a steadily converging stream 
resembling the outskirts of a solitary wave. In practice, flow of the latter 
sort may be indistinguishable from a uniform stream qcept  in a region 
close to the obstacle ; strictly speaking, however, they become uniform only 
at infinity. Although this distinction is a trivial one in some respects, 
it will assume importance in the subsequent argument. 

It is now desirable to recall some of the ideas put forward by Benjamin & 
Lighthill (1954) in connection with the theory of gravity waves of finite 
amplitude. They pointed .out that for any two-dimensional steady flow 
in a horizontal channel, there are three important physical quantities which 

i /  



On the $ow in channels when rigid obstacles are placed in the stream 23 1 

in the absence of friction and horizontal external forces, have the same value 
at every cross-section of the flow. These are Q the volume flow per unit 
span, R the energy per unit mass (i.e. g times the total head as measured 
above the channel bottom), and S the resultant of momentum flux and 
pressure force per unit span divided by the density. A train of long waves 
was shown to be determined uniquely by the values of Q, R and S, and 
there is reason for believing that this property is common to all wave-trains 
in parts distant from their origin and termination. This view is supported 
by the recent work of De (1955), who calculated numerical values of the 
quantities in question for a wide range of wavelengths. The former authors 
also demonstrated that the physically realizable combinations of Q, R and S 
are confined within certain limits. For instance, if Q and R are fixed, 
then S is restricted between a higher value corresponding to uniform 
subcritical flow and a lower value corresponding to uniform supercritical 
flow. Stationary wave-trains may occur for intermediate values of S; 
but the wave amplitude tends to zero as the upper limit is approached, 
whereas at the lower limit the wavelength becomes infinite, and the only 
possible wave is the solitary wave. 

We proceed by extending a line of argument begun in the paper by 
Benjamin & Lighthill (p. 455). If a rigid obstacle is lowered gradually 
into a slightly subcritical stream, it experiences an increasing wave resistance 
(corresponding to a reductidn of S on the downstream side) until the waves 
formed downstream become of great length, and their profile approaches 
that of the solitary wave. A different situation arises, however, if the 
Froude number of the respective supercritical flow (i.e. the flow with the 
same values of Q and R as the subcritical flow upstream) is greater than 
the value 1-25, at which, as McCowan (1894) showed, the solitary wave 
takes its extreme sharp-crested form. A gradual approach to the lower 
value of S is now impossible, since the extreme condition for the solitary 
wave is exceeded at the limit. In fact, as S is reduced from its upper limit, 
periodic ' waves of maximum height ' occur at a value of S in excess of the 
lower limit, and a further gradual reduction will result in energy losses due 
to breaking of waves. The obstacle must then be lowered by a finite 
amount, bringing S to the minimum value, before steady lossiess flow is 
again possible. No wave can form on the supercritical stream under these 
circumstances; but it will be shown presently that the stream has some 
features in common with the solitary wave. Recognition of the lower 
limit to S also shows that any obstruction of a stream initially in a supercritical 
condition is bound to result in energy losses, since a reduction of S is other- 
wise impossible. A bore 
sometimes occurs in practice on the stream receding from a sluice-gate. 
It may be caused by some obstruction, or simply by friction if the channel 
is fairly long. The flow assumes a subcritical state behind the bore, but 
with a smaller value of R than the subcritical flow upstream from the gate. 
(The material of this paragraph may be made somewhat clearer by consulting 
figure 1 in the paper by De (1955).) 

In fact a bore will be formed upstream. 
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The condition F > 1.25 noted above may be shown, by means of (1.1) 
and (1.2), to correspond to the condition F, < 0.792 for the respective 
subcritical stream. Hence we can conclude that if F, > 0-792 a transition 
from subcritical to supercritical uniform flow, in the manner indicated by 
figure 1 (present paper), cannot be achieved with R unchanged, since only 
wave-trains can result on the downstream side. Although such a transition 
is possible if F,, < 0.792, the obstacle must be immersed to a considerab’ly 
greater extent than that which causes waves. Thus a clear distinction is 
made between the action of a sluice-gate and that of a slightly submerged 
obstacle causing a wave-train downstream. These considerations seem 
to supply a complete answer to the question whether waves can form on the 
downstream side of a sluice-gate. This matter was raised by Southwell & 
Vaisey (1946), who were led to expect waves in the course of their 
calculations, although none were found. It was also considered by Binnie 
(1952), who presented a tentative argument indicating that waves are 
impossible. The question whether waves can form on the upstream side 
is deferred to a later part of the discussion. 

The special case of critical flow ( F  = 1) deserves separate attention. 
Let us therefore consider the flow in a channel which is supplied from 
a large reservoir, so that R is fixed, and which is initially free from obstruction 
of any sort. Such circumstances are well-known to give rise to critical 
flow, which makes the value of Q the maximum possible at the given total 
head. This fact may be established by various methods, a review of which 
was given by Binnie (1949). Suppose now that an obstacle is fixed in slight 
contact with the free surface at a point well down the channel, thereby 
causing a small reduction in S on the downstream side. The disturbed 
flow is clearly unstable; for the change in S necessitates a decrease in Q 
from its maximum value, since R cannot change, and hence an increase 
in depth on the upstream side. As the free surface rises upstream, a greater 
force is exerted against the obstacle, and the downstream value of S further 
decreases. Before steady conditions can be resumed, the free surface 
must rise to stagnation level on the front of the obstacle. The elevation 
of stagnation level above the channel bottom (i.e. the total head H )  is easily 
shown to be 1.5 times the depth of critical flow. Thus the obstacle is 
‘ wetted ’ to a height +Hin the final steady state. The resistance experienced 
by an obstacle this far immersed is much too large to be ascribable to wave 
formation ; and the flow is therefore of the kind illustrated in figure 1. 

It is now proposed to examine the profile of the receding stream in the 
case where waves are absent. The work of Benjamin & Lighthill again 
provides a convenient starting point. In a new presentation of ‘ cnoidal 
wave ’ theory, they demonstrated that the condition of constant Q and S 
leads to an approximate differential equation for the free surface (the condition 
of constant R being superfluous). In terms of coordinates ( x , y )  with the 
x-axis along the channel bottom, this may be written 

+Q2( a>e +gy3 - 2Ry2 + 2Sy - Q2 * 0. 
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The nature of the approximation on which (2.1) is based is noteworthy. 
The assumption was made that successive derivatives of the slope y' diminish 
fairly rapidly in order of magnitude, so that, for instance, y2yi" can reasonably 
be neglected in comparison with y". The next stage of approximation 
was observed to contribute terms of the order of to (2.1), and further 
stages would evidently contribute terms of the order of successively higher 
powers of y f 2 .  The trend of the coefficients in the early stages suggests 
that the method of approximation is rapidly convergent, provided y f  is 
fairly small. There is accordingly some justification for assuming that 
an exact solution exists for any flow with constant Q, R and S, and that 
(2.1) will provide a close approximation to it in parts where y f  is small. 
As will be explained in the next paragraph, this equation can lead to an 
approximation for the solitary wave. The mathematical existence of this 
wave has been proved by Friedrichs & Hyers (1954), and so the validity of 
(2.1) is confirmed in this one respect. Its validity in the present application, 
however, cannot be established by appeal to the work of Friedrichs & Hyers ; 
for the solitary wave is impossible with the values of Q, R and S to be con- 
sidered here. Nevertheless, it may be said that the physical aspects of the 
present problem, in which the flow-pattern is supposed to be stationary 
relative to the obstacle, are a good deal clearer than these aspects of the 
solitary wave, which is stationary only with respect to a hypothetical frame 
of reference. 

If Q, R and S take the values 

Q = uh, R = gh+$u2,  S = $gh2+u2h, (2.2) 
which are appropriate to a uniform stream with depth h and velocity u, 
and whose Froude number is therefore F = u / d ( g h ) ,  the cubic expression 
in (2.1) factorizes and the whole equation can be arranged in the form 

(g)2 = p 3 Y  (i;-l)a(Fe-$. 

With F > 1 this is identical with the equation for the solitary wave obtained 
by Rayleigh (1876 a). 'Other than the uniform flow y = h, its only solution 
is 

I* 2 -  - 1+(F2-l)sech2 
h 

The solitary wave is thus the only wave which can emerge from a uniform 
supercritical stream without loss of energy or momentum. 

This approximation to the solitary wave is most accurate at the outskirts 
of the wave where the slope and curvature are small. When the wave 
approaches its extreme form (at F = 1.25), the approximation is found to 
be no longer accurate over the whole wave, yet still holds at the outskirts. 
It is clear also that these results apply to the outlying parts of a stream with 
constant Q, R and S which converges towards uniform flow at F > 1.25, 
although the solitary wave is then impossible. The streams of concern 
here are clearly included in this category. Accordingly, their free surfaces 
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must satisfy (2.4) approximately up to a region close to the obstacle where 
the slope or curvature. becomes large. There is a simple way of testing this 
assertion; for, as Addison (1938) and Binnie (1952) have pointed out, 
the flow under a sluice-gate when the ratio s/H is small resembles a jet 
issuing under pressure in the absence of gravity. The latter exampIe is 
illustrated in figure 2 (a),  where the bottom line may be taken to represent 
either a plane wall or the centre-line of a symmetrical jet. Rayleigh (1876 d) 
found the complete solution of this problem. The free surface satisfies 
the equation 

where 8 is the angular slope tan-l(dy/dx) which ranges between 0 and - 477, 

and d has the same meaning as h in figure 1. In the corresponding gravity 
problem F is very large, and (2.3) consequently gives 

1 2 = 1--tan8. 
h 4 3  

Agreement between the two results is partly attributable to the similarity 
of the numerical factors 1 / 4 3  and 2/77 appearing in (2.5) and (2.6), but is 
in fact better than this alone would suggest. &The Cartesian equations 
equivalent to (2.5) and (2.6) are easily found; hence the agreement can 
Be checked very readily by plotting the two curves on tracing paper and 
fitting them together. They are found to fit closely in parts where the 
magnitude of 8 is less than about 30°, the maximum discrepancy in y / h  
being about 1 yo. The curves diverge significantly in the higher region where 
the curvature of the first of them (from (2.5)) becomes large. Note that 
for smaller Froude numbers the accuracy of (2.4)is likely to improve, whereas 
(2.5) becomes inaccurate. 

The approximation of (2.4) may be tested in one further instance by 
comparison with the solution for a sluice-gate which Southwell & Vaisey 
(1946) obtained by relaxation methods. In their example the assumed 
conditions were, in the notation of figure 1, H = 12 and h, = 11 length units. 
The depth and Froude number of the flow far downstream were not given 
explicitly, but from (1.1) and (1.2) they are easily calculated to be h = 3-854 
length units and F = 2-055: When these values are put into (2.4), the 
curve obtained from this equation is found to coincide with the lower 
part ,of the profile given by Southwell & Vaisey (p. 151 in their paper), 
but begins to diverge perceptibly from it at a point where the slope is about 
- 30°, a little way below the highest point. 

We turn from the. main argument for a moment in order to consider 
another matter explained by the differential equation (2.3). If F < 1 the 
equation has no real solution except y = h, the case of uniform flow. This 
fact demonstrates convincingly that non-uniform flow converging towards 
a uniform stream, as discussed previously, is impossible for values of F less 
than unity yet large enough for a long-wave approximation to apply. Any 
attempt to produce a uniform stream under these conditions is therefore 
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bound to fail, unless the flow can be made uniform on entry into the channel. 
Clearly, the result of any non-uniformity on entry will be a train of periodic 
waves, the values of 9, R and S being differently correlated than for uniform 
flow. The occurrence of waves as predicted here was observed experi- 
mentally by Binnie, navies & Orkney (1955), who mentioned similar 
findings by other investigators. 

This is a suitable place to raise the question of wave formation on the 
upstream side of an immersed obstacle. The situation at small Froude 
numbers, to which a short wavelength approximation can be applied, was 
discussed at length by Lamb (1932, $0 242-S), whose treatment was restricted, 
however, to infinitesimal disturbances of the free surface. He noted that 
in the absence of dissipative forces the problem is to some extent indeter- 
minate, since waves of small amplitude can always be superimposed on the 
stream without altering certain of the physical conditions (e.g. Q or 5’). 
There appears to be no simple way of extending Lamb’s argument to account 
for waves of finite size ; but the presence or absence of waves seems likely 
t o  depend only on the conditions specified far upstream. Hence one is 
justified in assuming that the flow is uniform upstream, as is done in the 
following treatment of the sluice-gate problem. 

3 .  FLOW UNDER A SLUICE-GATE 

Equation (2.4) has been shown to apply behind, but not too near, any 
obstacle adequately immersed. Other methods are needed, however, 
to  deal with the rapidly curving portion of the free surface which is always 
to be expected near a ‘ trailing edge ’, and which clearly depends on the shape 
of the obstacle. A sluice-gate and planing surface are the only examples 
treated in this paper, but similar calculations could undoubtedly be carried 
out for other boundary shapes. 

It is reasonable to suppose that in the region of B in figure 1 the flow is 
little affected by gravity, since the acceleration of the fluid particles is large 
there. Although (2.5) will roughly give this part of the free surface, the 
solution of the problem indicated in figure 2 ( b )  is rather more accurate. 
Here the flow upstream from the jet is confined within parallel walls at 
a distance D from the centre-line ; and, as a basis for comparison with the 
example in figure 1, we may take D = H a s  a useful estimate. This problem 
was solved by Mises (1917), although a formula for the free surface was 
not given in his paper. Straightforward methods show, however, that 
the free surface satisfies the equation 

with 

2d 
n-m y = d -  - tan-l(m sin d) ,  

2Dd S 2 tan-lm 
D 2 - d 2 ,  and - = I +  d n-m 

m =- ~ (3.2) 

This result can be combined with (2.3) to obtain a rough estimate of the 
complete free surface below the sluice. The two curves may be joined 
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at a point where 8 = - 30°, say, so that in (2.3) y'2 = (tan 30"y = a. To 
calculate the sluice-opening s for a given value of F, which specifies an 
appropriate value of D and also the height of the 'joining point ' (yo ,  say), 
the two equations (3.2) are used to eliminate k and d from the relation 

(3.3) 
2d 

s -yo = - (tan-1 m - tan-1 Sm), 
Tm 

which follows from (3.1). In the example treated by Southwell & Vaisey 
this method leads to a value 0.602 for the contraction ratio h/s, whereas they 

k .  

-.- 

Figure 2. Free streamline problems not affected by gravity. 

obtained 0.608." The method takes no account of velocity changes over 
the upper portion of the free surface, although over all parts the resultant 
velocity q varies according to Bernoulli's equation 

4 2  = 2g(H-y) .  (3.4) 
As the free surface falls between heights s and yo, the velocity increases by 
a factor 2/(H-s)/2/(H-yo),  which is found to be significantly greater 

* Their result was misprinted as 0.66; but Miss Vaisey has confirmed that 
the intented value is 0.608. 
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than unity in typical examples. We are therefore led to seek a more accurate 
method taking full account of gravity. 

By the method now to be described, a solution is found which satisfies 
the boundary condition (3.4) exactly at the edge B and at a ‘joining point ’ 
below which (2.3) can be applied accurately. The method is developed 
from one given by Pajer (1937), and so the present account is made fairly 
brief. Following the usual procedure in dealing with irrotational motions 
in the plane of a complex variable z, use is made of the fact that since the 
velocity potential 4 and stream function # are harmonic, the variable 
w = 4 + i# is a function of x only. The first aim of the method is to establish 
an approximate relation between 
5 = dw/dx = qe-ie. We consider a 
auxilliary variable f(x) defined by 

P _ = -  peio 
5 4  

w and the hodograph variable 
transformation to the plane of an 

k 
=f--j, (3.5) 

where p and k are positive real constants. 
imaginary parts of (3.5) leads to 

The separation of the real and 

p cos 8 k 
- 4 
p sin B - = ( ~ j l +  b) sinw, 

4 

= (If I- m) cosw, 

(3.7) 

where w = arg(f). We also make use of the transformation 

f ’ =  f 2 +  l/f2. ( 3 4  
It is now assumed that w = B = - &r at the edge B, and that If I = 1 a,long 

the free surface below this point. According to (3.5), the circle so defined in 
the f-plane is mapped in the hodograph as an ellipse, whose size and eccen- 
tricity depends on p and k. By a suitable choice of these constants, the 
points in the hodograph representing B and the ‘joining point ’ may be 
linked by an arc of the ellipse. 

From (3.8) we have thatf’ = 2 cos 2w on the free surface below B. At B, 
f’ = - 2, sincew = - &r ; and at infinity downstream7 = 2, since w = B = 0. 
In  other words, the free surface is mapped in they-plane between - 2 and 2 
along the real axis. On the straight line AB in figure 1, w = 8 = -&T; 

and q = 0 at A. Thus AB is mapped between infinity and -2  along the 
negative real axis off’. If the free surface upstream from A is taken to be 
horizontal, we have w = 8 = 0, and SOT is real along this surface also. It is 
therefore mapped along the positive real axis between infinity and a value 
f& = fg+ l/ft representing the conditions far upstream. It is a simple 
step to show that the lower half of they-plane maps the entire flow-pattern. 

The streamline # = 0 extends along the bed of the channel, and the 
streamline # = Q(where Q is thevolume flow rate) forms the upper boundary 
of the flow. As shown above, the latter streamline is mapped along the 
real axis in they-plane. The figure in the w-plane is an infinite strip of 
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width Q lying on the real (4) axis, and is mapped in the lower half of the 
f'-plane by the Schwarz-Christoffel transformation 

The relation between < and w is determined by (3.5), (3.8) and (3.9). 
The form of the free surface below B can hence be deduced by a standard 
method (see Lamb 1932, $74),  details of which may be omitted here. We 
find for this surface 

x = 72 [ logtan(; + ;) - n t a n h - l ( y ) ]  , (3.10) 

2cs l + k  
rnr  1 - k  

y = s - - - [tan-lm + tan-l(m sin a)], (3.11) 

where n = *(fo+ l/fo), m = 2fo/(f$- l), and c is the value of y/s  for w = 0. 

by reason of (3.7), 
If the boundary condition (3.4) is to be satisfied at  B, we must have, 

= 1 + k .  P 
d ( 2 d H -  $1) 

If this condition is also to be satisfied at a point below B where y = yo, t9 = 0,. 
and w = w,, we must also have 

p sin 0, 
= (1 + k)sin w,. 

d ( 2 A H -  YON 

(3.12) 
It follows that 

in which w, is determined (from (3.6) and (3.7)) by 
H-s 

1-k tanw, = 1' tan8,. 
+ k  

(3.13) 

There will be no need to consider further the constant p ,  which merely 
fixes the scale of the figure in thef-plane. 

It is convenient to introduce a new constant a = tan-lm (hence 
cot +a = f,), in terms of which (3.11) gives 

2cs l + k  
yo = s -  - - cot a [a+tan-l(tanasinw,)]. 

rr 1 - k  
We also find, by putting w = 0 in (3.11), that 

o! cot a. 
1 2 l + k  - -  
C - I + ; -  

(3.14) 

(3.15) 

Furthermore, if h, is the value of the depth upstream consistent with the 
assumption of its being constant everywhere, the continuity condition (1.2) 
leads to 

3 = (f, - k)/( 1 - k) = (cot &a - k tan ;a)/( 1 - k), 
cs 

from which, if a substitution for c is made from (3.14), we obtain 

ucota-tan$x = !? + 2h, -acota-cot&z, (3.16) 
s 7Ts ) s 7Ts 
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These results represent a flow which closely resembles the true solution 
up to the cross-section where y = yo ; beyond this the methods described 
previously can be applied. Our main object is to calculate the contraction 
ratio h/s as a function of the ratio s/H, which defines the flow-pattern uniquely 
on the basis of Froude number scaling. I t  is first necessary to obtain a 
suitable estimate of the quantity h, appearing in (3.16). We have so far 
neglected the small difference between H and h, (see figure l), but now 
tentatively take account of' it by assigning to h, a value somewhere between 
the two. (Note that no continuity condition is violated by doing this, since 
we are merely seeking a flow particularly resembling the actual flow in the 
region just below the sluice.) Inspection of the flow-pattern obtained by 
Southwell & Vaisey (1946, figure 25) suggests that Q(H+2ho) is a fair 
estimate for h,, although the value of h, is not at all critical when s / H  is 
fairly small. An initial estimate of h/s is required to calculate ho from the 
relation 

H(h,+h) = hi+hoh+h2, (3.17) 

which follows from (1.2) and (1.3). When 8, is specified, yo/S can be found 
by eliminating c, k ,  a and wg amongst the five equations (3.12) to (3.16). 
The calculation has to be done by numerical methods, but the following 
procedure was found to give fairly quick results. The value of tc is first 
guessed. This task is aided by extrapolation after solutions have been 
obtained for some values of s / H ,  and as a help in this respect we have 
a = 0 for s/H = 0. Using this estimate of a, k is calculated directly from 
(3.16) ; then c is calculated from (3.15), and wn from (3.13). Finally, yo 
is obtained both from (3.12) and from (3.14). This sequence is repeated 
with another estimate of a, and itis then possible to assess 01 more accurately 
by interpolation designed to bring the alternative estimates of yo together. 
Repetitions of the whole process with successively closer approximations 
to a lead rapidly to an accurate estimate of yo. The method is helped by 
the fact that the value of yo given by (3.12) varies greatly with a,  whereas the 
value from (3.14) varies very little with tc. 

e 

-90" 
-75" 
-60" 
-45" 
-35" 
-25" 

0 
0.0024 ' 0.0197 
0.0692 
0.1324 

I 0.2368 

3' 
(ft) 

1 .o 
0.9863 
0.9464 
0.8835 
0.8309 
0-7719 

Ta 

16.048 
16.085 
16.186 
16.318 
16.417 
16.499 

e l  

42 ' 

(f/4 

16.048 
16.075 
16.155 
16.280 
16,383 
16.499 

0 
0.010 
0.03 1 
0.038 
0.034 
0 

Forexample, with s/H = 0-2 and 8, = - 25" itis foundthatyn/s = 0.7719. 
Coordinates of the free surface in the region where - 90" < 8 < - 25" are 
given in table 1, which also includes values of q given by (3.6) (q,), and the 
correct values according to (3.4) ; s is taken as 1 ft, and g as 32.19 ft/sec2. 
The largest error'in q is seen to be slightly greater than 0.2%. 



240 T.  Brooke Benjamin 

After the value of yo has been established in this way, the calculation 
If (2.3) is applied at the 'joining point', it gives is completed as follows. 

s/H 

___ 
0 
0.1 
0.2 
0.3  
0.4 
0.5 

From (1.3) we also have 

h]s lzls 
(Paj er) 

0.6110 0.6110 
0.6060 - 
0.6022 0.6046 
0.5995 0.6036 
0.5980 0.6043 
0.5981 0.6066 

____ 

H 
- = l+*F'. 
h 

5.568 
3.822 
3.020 
2.522 i 2.165 

The elimination of F2 between these equations leads to 
(yo - h)2(2H - 2h-yo) - $(H - h)h2 tan200 = 0. (3.18) 

When divided by s3, this equation becomes a cubic in hls whose coefficients 
are functions of the known quantities HIS, yo/s and do ; this can be solved 
in a straightforward manner. 

Values of h/s calculated with Oo = -25" are tabulated as a function of 
s/H in table 2, which includes the Froude number according to (3.18). 
The table also shows the set of values obtained by Pajer (1937), who used 

a method similar to the first part of the present method but extended over 
the whole free surface. The errors in velocity were then considerably 
larger than at present, and were in fact largest in a region corresponding 
to O = - 25", where, by the present method, the error is deliberately reduced 
to  zero. Moreover, no account was taken of the difference between H and 
ha. The discrepancies between Pajer's results and the present ones are 
fairly small, although quite significant. A remarkable feature of table 2 
is the smalln,ess of the variation in hls. This effect is mainly due to gravity ; 
for in its absence (the case illustrated in figure 2 ( 6 ) )  the contraction ratio 
increases quite rapidly as the flow is narrowed upstream, and is always 
greater than the extreme value for the case in figure 2 (a) .  

The present method requires slight modification when applied to the 
problem treated by Southwell & Vaisey, in which H ,  h and Fare  given and 
s remains to be found. First, an estimate of s/H is made, and then h/s is 
calculated as before. Since h/s varies quite slowly with s/H,  this result 
leads to a much closer estimate and the approximation is then further 
improved by repetitions of the process. Starting with hlH = 0.3212 and 
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1;2 = 4.227, which are the values appropriate to Southwell & Vaisey's 
example, the method gives finally his = 0-5991. We recall that the value 
obtained by them was 0.608. The curves derived from the present theory 
and by Southwell 8r: Vaisey are both shown in figure 3. The two are 
indistinguishable up to a region just below B, but diverge appreciably in this 

4L I 0 I 

1 2 3 x 4  0 

Figure 3 .  Comparison between free surface profiles given by Southwell & Vaisey 
(- - -) and by present method (-); H = 12 in the units of length used 
here. 

region. The form of Southwell & Vaisey's curve very close to B seems 
unlikely to be correct, since it requires th,e streamline to undergo an unduly 
sudden change of direction at B. It should be noted, however, that figure 3 
reproduces only a small part of their complete flow diagram. Even with 
the fine computational net which they employed in the vicinity of B, errors 
of the same order of magnitude as the discrepancy noted here are to be 
expected (the differences between their recorded values of (N- y) and 
q/1/(2g) are of this order). The present method thus appears to be superior 
(in this one respect) to the relaxation method, even when the latter is applied 
with the high degree of precision achieved by Southwell & Vaisey. 

4. FLOW UNDER A PLANING SURFACE (HYDROPLANE) 

We now turn to the problem indicated in figure 4, where the obstacle 
is a plane inclined at an angle p( < 90") to the horizontal. The plane i s  
assumed to have been lowered into the stream to an extent sufficient to 
avoid standing waves on the downstream side. This problem has received 
much attention in the past due to its bearing on hydroplanes and sea-plane 
floats. The scope of existing theories was discussed by Southwell & Vaisey 
(Zoc. cit.), who also treated an example by relaxation methods. They took 

= 30°, and assumed the same initial conditions as in their sluice-gate 
F.M. Q 
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example. Their solution shows that the free surface curves very sharply 
just below the trailing edge B, but beyond this region follows the curve 
obtained in the previous example (figure 3). 

To account for the region near B ,  we may use the solution of the problem 
indicated in figure 2(c). This was included in the series of jet problems 
solved by Mises (1917); but, as in the example previously mentioned, he 
did not give an expression for the free surface. It can be shown without 
difficulty, however, that the intrinsic equation of the surface is 

n 

where I denotes the length of the arc. 
usual way that 

Hence, for = 30°, we find in the 

2 = 1+ --113 6 1  t a n h - 1 ( T ) - s i n 8 ] ,  2 sin 8 
d 

= 1.229 for 8 = -30". 

The curves obtained from (2.3) and (4.1) are suitably linked at a point where 
8 = - 20". In the example treated by Southwell & Vaisey, this procedure 
leads to the value 0.777 for the contraction ratio. The same value is found 
from the coordinates given in their figure 26. The value in the absence of 
gravity is, from (4.1), 1/1.229 = 0.814. For a refinement of the method, 
the solution of the problem in figure 2(d) may be used instead of (4.1). 

5 .  EXPERIMENTAL TESTS 

While in no respect being intended as a complete investigation, the 
following experiments serve to illustrate some of the matters considered in 
the preceding sections of this paper. The experiments were carried out 
in a horizontal channel previously used in the work of Binnie, Davies & 
Orkney (1955), whose paper can be consulted for full details of the equipment. 
After the completion of these authors' experiments, the wooden contraction 
connecting the channel with the supply tank was modified, with the result 
that uniform subcritical flow could be obtained at higher Froude numbers 
than before. The channel was 14in. wide and 8ft. long, with glads walls 
about 12in. high. When necessary, the stream could be held up by means 
of an adjustable sharp-crested weir at the downstream end ; but otherwise 
it fell freely into a sump after leaving the channel. A movable gantry 
supported a point gauge and Pitot tube, which provided accurate measure- 
ments of the stream depth and total head. Froude numbers were calculated 
from the formula F2 = 2(total head/depth - 1). The water supply was 
controlled in such a way that the flow rate Q was independent of any 
obstruction in the channel. This feature assumes significance when the 
theory of $2  is brought to bear on the experimental observations. The 
description of the experiments is suitably divided into three parts, as follows, 
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(i) Experiments in which the obstacle was $xed 
A rectangular brass plate was contructed with a width slightly less than 

that of the channel. It was suspended from a horizontal axle mounted 
above the channel at about 1 ft. from the upstream end, so that it could be 
swung down broadside to the stream. A sharp edge was machined on the 
bottom of the plate, and the small gaps between the sides and the walls of 
the channel were made water-tight with rubber sleeving. Struts attached 
to the rear face of the plate held it in position at any desired inclination. 

In the first experiment, the position of the plate was gradually adjusted 
until the bottom edge was brought into contact with the surface of a uniform 
subcritical stream. A large disturbance was always observed as soon as 
contact was made, provided the Froude number of the undisturbed stream 
was not too small. An appreciable increase in depth occurred on the 
upstream side, and a zone of eddying water was formed immediately in 
front on the obstacle. The latter effect evidently prevented the formation 
of a stagnation point in the manner indicated by figure 4. When steady 
conditions were resumed, the obstacle was well immersed in the stream 

A 

X 
Figure 4. Side elevation of planing surface. 

The result on the downstream side varied in character according to the 
initial Froude number and the inclination of the plate. If the Froude 
number was fairly small, say less than 0.3, and the plate sloped backwards 
as in figure 4, a stationary wave-train appeared, its surface being everywhere 
smooth. At rather higher.Froude numbers the waves were larger both in 
amplitude and length, and the leading wave broke. At a Froude number 
about 0.7 and with the plate inclined slightly forward, a wave-train appeared 
immediately after contact but was then swept away, leaving the stream 
in a uniform supercritical state. The wave-train could be held in place, 
however, by slightly raising the weir at the channel exit. 
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The effects of lowering the plate further into the stream are most easily 
described in reverse, that is, we recount the results of gradually lifting the 
plate backwards from a vertical position as in figure 1. The adjustments 
to the plate were made slowly enough for the flow to approximate the steady 
state appropriate to each stage, and the weir was kept out of action. As 
the plate was raised, the water level fell upstream and rose downstream, 
so that the respective Froude numbers increased and decreased. Eventually 
a wave appeared near the end of the channel and moved upstream, thus 
causing other waves to form behind it. The leading wave then came to 
rest just behind the obstacle, and broke at its crest. This exemplified the 
type of weak undular bore (hydraulic jump) discussed theoretically by 
Benjamin & Lighthill (1954). By comparing the results of several experi- 
ments like this one, the Froude number at which the bore first occurred 
was found to vary with the depth of the stream. The critical value was 
about 1.5 for a depth of about 2.5 in., and increased for shallower streams. 
When the weir was not in use, the bore clearly resulted from the action of 
friction alone. By raising the weir it could, of course, be made to form at 
much higher Froude numbers. If the plate was lifted a little further, the 
turbulent zone at the crest of the leading wave became smaller, and in a few 
of the tests it vanished entirely. At this stage, however, some sort of 
instability evidently occurred, for the water level upstream began to rise 
and fall periodically, while the wave-train downstream began to oscillate 
longitudinally. The oscillations usually increased in amplitude until the 
surface of the water suddenly fell away from the bottom of the plate, 
whereupon the flow became uniform. 

According to the theory of $2, a uniform supercritical stream cannot 
be formed by the action of an obstacle unless F > 1.25, since a wave-train 
is bound to result from any attempt to reduce F below this value. The 
experiments indicated that, owing to the formation of bores which is not 
considered in the theory, the value of of F at which waves first appear is 
in practice somewhat higher than the theoretical limit. Nevertheless, 
when waves appear for F > 1.25, a significant amount of energy must be 
dissipated in the bore ; whereas in the range 1 < F < 1.25, a minute amount 
of dissipation, however small, is sufficient to precipitate a wave-train (see 
Benjamin & Lighthill, p. 452). It seems likely, therefore, that if measures 
were taken to reduce frictional effects and so inhibit the formation of a bore 
(by boundary layer suction, say), the critical value of F could be lowered, 
but could never be reduced below 1.25. 

(ii) Experiments in which the wave resistance was specifid 
T o  obviate the confusing oscillations observed in the foregoing 

experiments, the following device was employed. As before, a planing 
plate was supported from a horizontal axle broadside to the stream. This 
time, however, the plate was delicately counter-balanced, and a small 
clearmce was left open between each of its sides and the adjacent channel 
wall. The whole apparatus was of light construction, and the friction of 
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the support was extremely small ; consequently a light finger-touch was 
sufficient to bring the bottom of the plate into contact with the stream. 
The plate could be immersed to any desired extent by loading the plate 
with suitable weights ; hence it was a simple matter to estimate the horizontal 
force exerted against the stream: Disturbances arising from the sides of 
the plate tended to spoil the two-dimensional character of the flow, but 
were small enough to be unimportant. 

By allowing the obstacle freedom of movement in this way, the resistance 
which it experienced on immersion was made independent of small changes 
in the level of the stream. This property was, of course, not possessed by 
the fixed obstacle in the previous experiments, and its absence then was 
evidently responsible for the instability accompanying slight immersions. 
No oscillation was observed with the second device in use. 

A number of experiments were made in which the resistance was increased 
gradually from zero by the addition of weights to the plate. The waves 
first to appear were very small in amplitude, and their length X was found 
to be in good agreement with the usual formula 

2nh0 
tanh - 

X 
F,2= mo A )  

where h, and Fo are the depth and Froude number upstream. The 
amplitude of the waves and the wavelength both became larger as the 
resistance was increased, although the proportional increase in the wave- 
length was quite small. 

The reduction in the quantity S just sufficient to produce breaking waves 
was estimated for various values of F,. These estimates were found to 
agree fairly well with the theoretical results of De (1955), the method of 
comparison being as'follows. If the total drag on the obstacle is M grams 
weight, the reduction in S is obviously S# = Mg/(pb), where b is the breadth 
of the channel. In presenting his numerical results, De considers a dimen- 
sionless quantity s = SlS,, where S, is the value of S for a critical stream 
with the given flow rate Q. 

Hence we have, for the reduction in s, 

Eventually the leading wave broke. 

It can easily be shown that 
S, = ighEFf3. (5.2) 

After specifying F,, the required theoretical value of S* can be measured 
on figure 2 in De's paper. Advantage was taken, however, of an enlarged 
and more detailed version of this figure kindly made available to the author. 
A typical set of measurements, made when the leading wave was on the 
point of breaking, was h, = 14.7 cm, Fo = 0.701 and M = 52 gm. In 
addition we had b = 35.6 cm and p = 1 gm/cm3, and with these values (5.3) 
gives s# = 0.0072. The value of s" estimated from De's chart was 0.0079. 
The slight deficiency of the experimental estimate, which is a common feature 
i n  all similar tests, may have been due to the well-known fact that in practice 
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stationary waves break before their height reaches the theoretical limit. 
For the conditions quoted here the wavelength of breaking waves was 
estimated to be roughly 50cm. The wave-number 2.rrh0/X was therefore 
about 1.8, which agrees fairly closely with the value indicated on the chart. 

(iii) Measurements of the contraction ratio for a sluice-gate 
These measurements were taken in order to check the theoretical values 

derived in Q 3. The brass plate used in the first group of experiments was 
fixed in a vertical position, and careful adjustments were made to insure 
that the bottom edge was strictly horizontal. The opening s was 3.57in. 
for one series of tests, and 1-02in. for another. In  each series, readings 
of the total head and depth were taken in mid-stream at a distance about 
4.5s downstream from the sluice. The value of H was varied over as 
wide a range as possible by adjusting the flow rate. The maximum useful 
value of H was that at which the water level in front of the sluice rose to the 
top of the channel walls. At the minimum value a bore formed on the 
downstream side. 

Experimental values of the contraction ratio h/s are plotted as a function 
of s/H in figure 5 ,  which includes the theoretical curve according to 53. 

Figure 5.  Comparison between theoretical values of contraction ratio ( 1 
and experimental values for sluice-openings of 1.02 in. (-0-) and 
3 5 7  in. (- x -). 
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Both series of tests specified above are represented in the figure. The two 
experimental curves are seen to lie above the theoretical curve, the 
discrepancy being larger for the smaller value of s. The three curves appear 
to converge for small values of s/H, that is, when the downstream Froude 
number is large. At first sight figure 5 tends to exaggerate the influence 
of friction on the flow ; but the following interpetation casts a more favourable 
light on the comparison between theory and experiment. 

Following the usual procedure in hydraulic experiments, traces of 
colouring matter were placed in the stream and their movements observed, 
In this way the flow-pattern was seen to be approximately as the theory 
predicts, except in an eddying region near the stagnation point and in the 
boundary layer on the channel bottom-which was apparently always in 
a laminar state in the vicinity of the sluice. The boundary layer on the face 
of the sluice appeared to have only local importance, probably because the 
velocity is small over most of this region. Let us therefore consider that 
the discharge under the sluice is affected by friction only in as far as the 
effective opening is reduced to a value s - 6, where 6 is a quantity roughly 
the same as the thickness of the boundary layer. The depth downstream 
is similarly reduced; hence the discrepancy A in the contraction ratio is 
approximately proportional to 61s. If we now tentatively assume that 
s determines the length scale to be associated with the growth of the boundary 
layer, it follows that A is proportional to the Reynolds number based on the 
length s. Consequently, for two experiments at the same Froude number, 
we have A , / A ,  = (s 1s )3/4. With s1 = 1.02 and s2 = 3.57, the values in inches 

2 :  for the tests in question, this ratio is 2.6. The discrepancy in s/H varies 
in the same way. Examination of figure 5 shows that the experimental 
values are roughly in agreement with this result over most of the range of 
s/H. The extent of the agreement is in fact quite surprising in view of the 
very rough and ready nature of the above calculation. By observing the 
drop in total head as the Pitot tube was brought near the channel bottom, 
the thickness of the boundary layer near the wider sluice (s = 3.57 in.) was 
estimated to be of the order of t in .  Note that the corrections necessary 
to bring the experimental results into agreement with the theory are also 
of this order. 

These three groups of experiments amply confirm the theory’s usefulness 
in qualitatively assessing the flow. They suggest moreover that if allowance 
could be made for the boundary layer on the.channe1 bottom, the theory 
would give accurate predictions of the drag on an obstacle and other physical 
quantities. The eddying zone in front of the obstacle was the most noticeable 
effect of friction in the experiments, but it appeared to have little influence 
on the flow downstream. Very complex phenomena, due to surface 
tension and shedding of the boundary layer, were to be expected in the 
region where the free surface first springs clear of the obstacle ; but they 
did not appear to affect the overall characteristics of the flow. 

Further experimental work is desirable, especially on the boundary 
layer. For instance, each of a series of measurements as in (iii) might 
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usefully be accompanied by careful estimates of the boundary layer thickness. 
This procedure might establish a close agreement with the theory of $2. 
Further, the method used in (ii) could probably be refined a good deal, 
and might profitably be extended to measurements of wave resistance over 
the entire range of De’s theoretical results. 
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